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In school you get the theory and you think [a structure] should react in this
direction, or this way. And then when you actually get to your job, you get a little
bit of a better feel for the actual quantitative yeah, it should react in this way but
it should only go this much. And that's just the kind of learning experience that you
pile on after the years.

Carl, junior engineer, Firm 1

Overview

When the authors of the Principles and Standards for School Mathematics stress that, "The need

to understand and be able to use mathematics in everyday life and in the workplace has never been

greater" (NCTM, 2000, p. 6), they reflect an international conviction that K-12 math education can and

must play a central role in meeting that need. Many educators believe that "authentic learning

experiences," mimicking what adults do in work and life, enhance students' learning of mathematical

concepts as well as prepare students to be productive math users as adults in an increasingly mathematical

world. Linking the math classroom to the world outside requires an understanding of the actual

mathematical requirements of adults in their daily practices, and a growing body of research has been

providing just that. Ironically, however, many "everyday mathematics" studies, and virtually all

ethnographic ones (e.g., Lave, 1988; Scribner, 1984; Hall, 1999; Hutchins, 1995; Nunes, Schliemann, and

Carraher, 1993) expose a striking contrast, or "gap," between mathematical behavior in out-of-school

practices and that promoted by schools. While schools traditionally aim to teach formal, abstract, general

techniques that derive their power by transcending situational and social factors, everyday math appears

to be informal, situated (Greeno, 1997), reliant on contextual artifacts, culturally shaped, and locally

invented.

Central to the arguments in these "gap-finding" studies is the abstract or concrete nature of the

quantities, concepts, and methods involved in mathematical activity. Abstract knowledge is typically

characterized as knowledge whose meaning is independent from any particular, real-world situations or

artifacts, but which can be generally applied to many situations. Noss, Hoyles, and Pozzi (2002) define

abstract knowledge as "lying in a separate realm from action, tools, language, or any external referential

'This material is based upon work supported by a Stanford Graduate Fellowship.
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sign system [...], inside a system with its own objects and its own rules for transforming them" (p. 207).

Davis and Hersh (1981) offer two meanings for abstraction: idealization, in which "all the accidentals and

imperfections of the concrete instance have been miraculously eliminated" (p. 126), and extraction of the

theoretical features common to a set of tangible objects. Everyday math researchers have identified, in

particular, units involving ratios as abstract. For example, Carraher (1991) finds the profit per item

purchased an "abstract notion" for Brazilian street sellers because it is "a derived quantity never directly

encountered in their work" (p. 196). Similarly, Noss et al. (2002) consider the concept of concentration

(the ratio of drug mass to solution volume) to be an abstraction in the practice of nursing because of its

invariance across diverse dosage calculation problems.

Concreteness, usually positioned as the opposite of abstraction, generally refers to a close and

direct correspondence with particular entities, not their class. Wilensky (1991) explains that it is natural

for schools to want to move students "away from the confining world of the concrete, where they can

only learn things about relatively few objects, to the more expansive world of the abstract, where what

they learn will apply widely and generally" (p. 195). Despite the putative advantages of abstraction,

some researchers have noted the tendency of "just plain folk" to avoid calculating with abstract units in

everyday activity. Murtaugh (1985) found that grocery shoppers determining the best buy generally did

not calculate the unit price, presumably because of its lack of direct relationship to the desired solution:

"Shoppers apparently feel that it is not worth the effort to calculate the price per single ounce, when a

single ounce is neither purchased nor consumed" (p. 192).

Besides units, solving processes have been separated in the research literature along abstract-

concrete lines. Carraher and Schliemann (2002) found that, in school, students "commonly learn

algorithms for manipulating numerical values without reference to physical quantities," while adults in

the workplace use mathematics with "continuous reference to the situation and the physical quantities

involved" (p. 135). The difference goes deeper than just the nature of the quantities used; the abstraction

or generalizability of the methods themselves is considered. For decades, cognitive scientists have

operated within the paradigm of knowledge "transfer" to explain how people know how to act in new

situations. Transfer research has traditionally presumed the existence of cognitive mechanisms, such as

general algorithms, analogies, isomorphism, and mental maps, that epitomize abstraction. According to

transfer theory, people apply such decontextualized "tools" across divergent problem-solving situations;

the tools remain unchanged by the process, retaining no feature of the situation (Lave, 1988). Lave

criticizes transfer research for these presumptions as well as for its methodology, and she demonstrates

through her own studies that everyday problem solving is inextricably grounded in its particular settings,

with solution methods and ongoing activity shaping each other.
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It is possible, however, that this dichotomous view, whereby school math is abstract and out-of-

school math is concrete, is a byproduct of a limitation of the extant research. Most everyday-mathematics

studies have examined practices known to involve only low-level math, or little math at all, for example,

grocery shopping (Lave, 1988) and dairy factory work (Scribner, 1984)2. Investigating more

mathematized practices might present a different picture of the abstraction or concreteness of quantities,

methods, and concepts used by some people everyday. Such research, in fact, would hold more relevance

for many math educators; at least by high school, math teaching aims beyond the arithmetic requirements

of grocery shopping and factory work. Accordingly, I conducted an ethnographic study of the

mathematical behavior of workers in a highly mathematized field: structural engineering. The texts,

processes, and training programs of the engineering profession are rife with abstract quantities and units,

idealized forms, and general theory, so engineering would seem to be as fertile a field for abstract

thinking as any. In this paper, I explore the units, quantities, and problem-solving procedures that

engineers actually use in practice, and I analyze these in terms of abstraction. Drawing on the

conventional notions of abstract and concrete discussed above, I pay particular attention to the

relationship of units and quantities to specific entities in the context; the engineers' efforts to make

meaningful connections to physical phenomena; the use of general, decontextualized conceptual tools;

and the influence of the setting on calculation methods. A main purpose of this inquiry is to explore the

degree to which the notion of a gap between school and everyday math holds when the scope of practices

considered "everyday" is extended.

My analysis resonates in some ways with prior findings about everyday mathematics. In my

observations, the quantities with which the engineers calculate have meaning with respect to the current

situation, and referring to that meaning can facilitate calculation and help steer it along a correct path.

But implicit in earlier research is the notion that abstraction, generality, concreteness, and contextual

meaning are static, inherent features of particular quantities, at least relative to their calculation settings,

such that categorizing the quantities used in a practice along these lines serves as something of a litmus

test for determining whether the mathematical behavior is school-like or everyday (e.g., Harris, 1991).

My analysis leads me to a different interpretation, in which the degree of abstraction of a quantity is

individual and dynamic. The following episodes will illustrate my contention that engineering experience

includes the gradual, personal transformation of concepts from abstract to concrete as well as the ability

to move fluidly between abstract and concrete perspectives. This interpretation weakens a key criterion

for identifying a school-everyday math gap. Just as the level of formality of engineering calculations was

2 An exception is the nursing study by Noss et al. (2002). While the calculations required of the nurses were not
especially sophisticated, mainly using ratios, they were at least arguably in the realm of the early high school
curriculum. Their findings support the notion that the gap metaphor might be less apt for more mathematized
practices, as I discuss later in this paper.
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seen in the previous chapter to be difficult or impossible to judge, so, too, is judging the level of

abstraction of engineering quantities, concepts, and methods. Abstract and concrete might appropriately

describe the elements of engineering when considered as entities in codes or textbooks. But I hope to

show in this paper that, as these elements are used and understood by engineers in practice, abstract and

concrete are far more relative terms.

Method

In everyday mathematics research, Jean Lave's Cognition in Practice (1988) is seminal. Lave

promotes a methodology that treats "person-in-activity" as an integral whole. This analysis is part of a

larger study that adopts Lave's methodology to examine the mathematical behavior of structural

engineers. For this study, I conducted 70 hours of ethnographic observations of structural engineers in

two firms as they went about their normal, everyday work. In order to increase my understanding of the

contexts surrounding the engineers' mathematical activity the overarching purposes and problems

motivating it, background knowledge supporting it, and social and cultural influences I took as my unit

of analysis an extended work task. The four tasks I observed (two in each firm) were characteristic of

design work and spanned several days each. They involved multiple engineers, both novice and expert,

required the use of various technological tools, and presented a wide range of quantitative problems. Data

collected included field notes, audiotape transcripts of nearly all dialogue among engineers or between

engineers and me, copies of artifacts generated in practice (drawings, documents, calculation sheets,

spreadsheets, etc.), and the engineers' written and oral answers to clarifying questions I posed afterwards

(including 24 hours of interviews). While the study took a primarily etic perspective, particularly in the

interpretation of what counted as mathematical behavior, I relied heavily on the engineers' explanations

of their work and thinking during their activity as well as their later confirmations of my descriptions and

understanding of their problem solving.

My analytic process involved multiple interpretive passes through the data. Initial passes were

concerned with generating accurate accounts of the engineers' mathematical steps and my understanding

of the engineering and mathematical nature of the problems and solutions. This early analysis enabled the

construction of four cases coherent accounts of the engineers' problem-solving activity within each

major task that captured the social, cognitive, and resource contexts. Later passes, using the cases as the

primary data form, aimed to distill themes and patterns relevant to the issue of the gap between school

and everyday math. Qualitative analysis software was used to develop categories for the kind of math

used and to code the cases for these categories. Larger themes and patterns were derived through

repeated and comparative readings of the cases and close analysis of major problem-solving episodes in

each task.
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This paper presents the analysis of the data regarding one of the major themes identified in the

larger study: abstraction and concreteness. First, I present a detailed interpretation ofan extended

vignette from one of the four cases. Next, I extend the analysis through shorter vignettes from the other

cases and interview excerpts. Finally, I offer some implications for further research.

* * *

Vignette: Oldtown Parking Garage

Like many parking garages, the one that the engineers of Firm 1 are designing will be constructed

from precast concrete elements, molded in a factory in a limited number of standard shapes. My

observations occur early in the Oldtown project and focus on the analysis of the lateral system, the

theoretical subset of the structure designed to resist lateral loads in this project, a system of extra strong

walls. Lateral analysis involves identifying physical features of the lateral system (e.g., the walls'

locations, dimensions, and materials) and environmental features (e.g., wind and seismic loads expected

in the region, soil type) and using these to calculate the lateral forces imposed on each member of the

system. That data will subsequently inform the design of each member. Lateral analysis is something of

a "bootstrapping" process: the engineer must make initial rough design assumptions in order to get

started, then the design and analysis inform each other as each converges to a final state through repeated

iterations. Outside factors, primarily frequent design changes from the architect, also impel and inform

analysis iterations. Central to the lateral analysis is the calculation of the base shear, the force an external

lateral load applies to the base of the building. Base shear is a function of the weight of the building and

various environmental factors.

An unusual aspect of the Oldtown project is the use of multiple building codes. Firm l's projects

are usually subject to the 1997 Uniform Building Code (UBC)3, the governing code for projects in the

Western United States, with stringent requirements for seismic design. However, Oldtown is located in

the east, and the official code is the Building Officials & Code Administrators (BOCA) National Building

Code4. Meanwhile, the entire industry is slowly adopting the International Building Code (IBC)5. The

formal documents and calculations for this project will obey the BOCA, but, anticipating the possible

local adoption of the IBC mid-project, George, the owner of Firm 1, wants the lateral design to satisfy the

IBC as well, to avoid redesign and reconstruction later to meet the IBC's higher seismic requirements.

Also, because the junior engineers on the project, Carl and Francie, have never worked with either the

IBC or BOCA, George wants them to find the UBC-required loads as a check on their BOCA and IBC

3 International Conference of Building Officials, 1997.
4 Building Officials and Code Administrators International, Inc., 1999.
5 International Conference of Building Officials, 2000.
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results. Firm 1 has a homegrown spreadsheet for finding the base shear according to formulas and factors

from the UBC.

Except for the few rough, preliminary calculations George did before leaving town, the lateral

analysis begins in earnest with this vignette. George has recruited Peter, a senior engineer from Firm l's

sister office, to come to town today to guide Carl, Francie, and Craig, the summer intern, through the use

of the UBC-based spreadsheet to find the seismic base shear.

Concrete and abstract units

After entering project-identifying information into the spreadsheet, the team is prompted for the

building weight, a value that requires some calculation. Most of the garage's weight is made up of

"double T-beams": precast concrete elements integrating two beams with a wide flange above it, thus

with a cross-section that looks like a double-stemmed T (Figure 1, p. 24). The 12'-wide top flanges

interlock to form the floor. A topped T-beam has an extra 2" of concrete poured on top of the 2"-thick

flange on the untopped version. Twelve-foot Ts are a new shape in the industry; until recently only 8'-

and 10'-wide Ts were standard. The concrete manual that Firm I owns, the PCI Design Handbook°, only

lists specs for those older forms. In this first excerpt from the case, Peter leads the team through a rough

weight calculation for the 12' T, based on the information they have for the 10' T.

Peter asks what a typical 12' T-beam weighs, and Carl goes for the PCI, though Peter reminds him that the 12' T
won't be in it. Carl returns and opens the PCI to a spec table for a 10'x 32" T; Carl has guessed at the 32" depth.
Out loud, Peter now proceeds to calculate a weight estimate for a 12' T. The PCI gives the beam weights per lineal
foot, so users can calculate the weight of any length T. So some of Peter's calculations concern 1'-thick slices.

C: [Reading] Weight: 641 pounds per lineal foot, 64 pounds per square foot.
P: 64 pounds per square foot. Now if we add... is there a total weight? 64...641 pounds per lineal foot. And

we're adding to that 2' of...This is going to be topped, right? And this is the topped weight [he looks at
the PCI page; at this point he seems to notice and switch to the topped weight of 891 pounds per foot].

A 10' T is 10' wide, so there are 10 square feet in each 1' slice of beam. A rough approximation

(that ignores the unequal distribution of concrete across the cross-section) is that each square foot would

weigh 641/10 or about 64 psf. At first, Peter uses the weight given in the table for the untopped beam,

641 plf, but in the middle he switches to the topped weight of 891 plf. Peter now conceptually models a

12' T by adding a foot of extra flange to each side of a 10' T (Figure 2).

P: OK. So, I'm going to say 2 feet of 4" thick is...times...is 48, that's another 48 pounds per square foot.
No, wait a minute, times [he pauses, then uses a calculator]. Is that right? Add a 4" slab, 96 pounds per
foot, an extra 2' on top of the 891 pounds per foot? OK, so I'm going to...988 pounds per foot.

C: So 99 pounds per square foot?
P: Yeah, divided by 12...82 psf.

6 Prestressed Concrete Inst, 1999.

6



The flange is 4" thick, and Peter uses a concrete weight of 12 pounds per inch per square foot, so a 4"-thick concrete
slab weighs 48 pounds per square foot (psf). To each lineal foot slice of the T, then, Peter adds 2 sq. feet of slab,
one on each side, at 48 pounds each. Now he must add this extra 96 pounds to the weight of a lineal foot of the
beam: 96 + 891 = 987 pounds. Finally, he finds a psf weight for the 12' T by taking the weight of the lineal foot
slice (which he for some reason calls 988 plf), and dividing it by the 12 square feet that are in the slice, to get 82 psf.
Although this average poorly represents any single square foot of the T because of its irregular cross-section, it will
work in the calculation of the total floor weight, typically found per square foot, since every square foot of the T-
beam will be included. At first Carl and Peter are surprised by the fact that the weight of the 12' T is lower than that
of the 10' T. Then they realize that this is not the total weight of a T-beam but of a square foot of the beam. This
should be lower for the 12' T, since, at least as Peter has modeled it, the 12' T is not a proportionally scaled-up
version of the 10' T but just a 10' T with extra flange the lighter part of the beam.

It seems almost trivial (not to mention a bad pun) to point out that many of the quantities Peter

and Carl use in this episode are concrete. Outside of pure mathematics, any practice will need to employ

quantities that measure actual entities in the setting in order for math to be of any use in resolving

quantitative problems. Here, the values of 12' (the width of the T) and 4" (its flange thickness)

correspond fairly literally to specific physical phenomena, though not quite as directly as do the size of a

box of noodles described by Lave or the numbers of bottles in a crate described by Scribner; unlike those

situations, Peter and Carl cannot see or touch the actual T-beam. But the issue of concreteness becomes

grayer with the values 641 pounds per lineal foot (plf) and 64 pounds per square foot (psf). These

quantities still make reference to an obvious phenomenon (weight) associated with particular physical

entities (T-beams) and as such seem much more concrete than abstract. Arguably, however, they move a

step towards abstraction by introducing a ratio in their units. While an inch (as in the 4" thickness value)

is simple to picture, a pound per lineal foot is not so easily tied to a concrete artifact or image. In fact, the

units of psf and plf seem conceptually equivalent to the ratio units that Carraher and Murtaugh, cited in

this paper's introduction, used to exemplify abstraction. This suggests it is more useful to consider

abstraction a matter of degree. After all, it is possible to picture a lineal foot of a T-beam: one can

imagine the beam being cut, like bread, into l'-thick slices. Peter may be picturing a lineal-foot slice of

beam when he mentally models a 12' T as a 10' T with its flange extended by a foot on each side. Since

he carries out this weight calculation by lineal foot, a mental image of a 1' slice of beam may help him

keep his work in the appropriate units.

There is no reason to presume, however, that engineers depend on concrete mental images of the

units with which they calculate, particularly ones as common as plf and psf. In manuals and in

calculations, most weight specifications for beams and columns are expressed per unit length or per unit

area, since the lengths and areas of these elements are variable and determined by the project. In my

observations, the engineers usually operate with these ratio units with ease and familiarity. When they do

encounter confusion, they rely on dimensional analysis to keep their calculations straight. Once units

become as complex as pounds per inch per square foot, the unit on the concrete weight that Peter uses, it
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would be surprising indeed if the engineers bothered to try to conjure up a mental image of them in the

course of calculation (though it can be done). The fact that Peter and Carl always speak the full unit

names on each quantity, when in most other respects their dialogue is informal and vague, suggests that

dimensional analysis is an important tool for guiding calculation steps where reference to physical

meaning cannot, and that its use is anticipated.

Though Peter and Carl are comfortable working with quantities and units that they may not

directly relate to concrete artifacts or images, it is important to note that they do not stay in the abstract

realm for long. Exhibiting behavior I see throughout my observations, Peter and Carl do not go far in

their calculation before attempting to make a direct connection to the real situation. At the end of the

above excerpt, when they arrive at a weight for the 12' T, they try to assess its reasonableness by

comparing it to the weight of the 10' T. Here, they become temporarily confused by the abstraction of

their quantity. Their initial surprise that the 12' T would weigh less than the 10' T indicates that,

fleetingly and perhaps unconsciously, they may have mentally simplified the psf unit to pounds in order

to tie their result to a more tangible physical phenomenon. But they quickly remember they are working

in ratio units and realize that the way they have modeled the 12' T would indeed make it lighter, per

square foot, than the 10' T. This instance also demonstrates that tying results to concrete phenomena in

this case absolute weight in order to judge reasonableness or make sense can be of limited benefit. The

per-square-foot weight of a T-beam has little concrete, practical meaning because the square-foot chunks

in a slice of T-beam have widely varying shapes and, therefore, absolute weights. The chunks that

include the stems of the T are far deeper and heavier than those out in the flange, and probably no actual

square foot chunk has the same weight as the psf weight of the slice (Figure 3). Attempting to connect to

a concrete image of the psf weight momentarily hinders Peter and Carl's effort to judge their result.

Guidance by an abstract, general concept

Having found a psf weight for the T-beams, the team continues the weight calculation for the

entire garage and then checks it against another calculation that George, the firm's owner, had calculated

before leaving town. This excerpt and the previous one make clear that structural engineering, unlike

many practices previously studied, can involve a considerable amount of calculation activity. What is not

always clear, however, is how the engineers know what calculations to perform; the team does not follow

a set of steps in a text and many calculation decisions are open. This excerpt illustrates one meansof

guidance: an overarching, abstract concept.
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Using dimensions from the architect's drawing, Carl calculates the square footage of a floor 434 by 242 or about
105,000 sq' then multiplies by the 82 psf weight they have just calculated for the T-beams, gets 8610 kips', and
exclaims, "Wow!" Peter estimates the remaining weight of a story, to take the columns and walls into account along
with the T-beams:

P: What do you think for the columns and wall panels? Just for, lemme just throw in another 10%, and you
guys'll have to go back and make that right. So why don't you say times 1.1 for walls and columns?

Peter multiplies 8610k by 1.1 and gets approximately 9500k for the story weight. Immediately, he wants to check
this figure against a value that George had calculated days ago: 340k for the load on each foundation column. Peter
and Carl make out a 5-by-12 array of columns in the drawing. Peter calculates the load on each column by first
multiplying the story weight by 4 for the number of floors, then dividing by 60 columns. This gives (9500)(4)/(60)
or 633k per column, almost twice George's 340k.

Now, they systematically try to reduce the discrepancy. First, Carl remarks that "George was spouting out
numbers" and might have taken different loads into account. Peter reworks his calculation but gets the same result.
Carl looks at the drawing and finds 6 additional columns outlying the 5-by-12 array. Carl then asks Peter to explain
his calculation. As Peter does so, he realizes that there are only three, not four, stories actually supported by
columns, since the lowest floor rests on the ground. Peter revises the calculation for three stories and gets
(9500)(3)/(60) or 475k. Carl changes this calculation to reflect 66 columns, which reduces the load to 430k.
Finally, they decide to subtract off the weight of the holes that will be cut in the floors at the top of each auto ramp.
Peter ascertains from the drawings that these holes are 11,000 sq.'. Carl multiplies this area by the 82 psf floor
weight and reports they can subtract roughly 1000k per story. Carl completes the calculation, first reducing each
story weight from 9500k to 8500k, next multiplying by 3 stories, and finally dividing by 66 columns to get 386k per
column. They accept this as close enough to George's estimate to justify their weight calculation.

In this excerpt, Carl and Peter apparently won't feel comfortable with their own weight

calculation until it comes close to the one George had calculated days earlier. The iterative process by

which they close in on their target is typical of the engineers' mathematical behavior. Non-engineers

might read this excerpt with horror, seeing evidence that engineers decide almost capriciously what

factors to include in their calculations. After all, if there are in fact ramp holes in the floors, shouldn't

Peter and Carl have subtracted them right off the bat? But there is method to their process. Peter and

Carl are guided by conservatism, a key theoretical concept that pervades the work I observed (and the

language; this is an engineering term, not my own). To understand a value or procedure as conservative

is to attribute to it a broadly general and widely applicable quality, defined informally as "safe." To be

conservative, a value must be larger or smaller than some critical value (perhaps given by the code),

below or above which, respectively, failure (or code violation) occurs. Similarly, a conservative method

relies on assumptions expected to produce conservative values. Besides ensuring physical safety,

conservatism is something of a trick that makes much of structural design work possible, by narrowing

down the vast number of potential solutions or by enabling approximation where exact solution would be

impossible. In the excerpt above, the team cannot possibly calculate the exact weight of a story; they

neither have enough information about the building (for one thing, they lack the actual weight of a 12' T),

nor can they take into account every detail (for example, the weight of every bolt). But an exact building

One kip equals 1,000 pounds.
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weight is not needed, only one that is larger, or more conservative, than the exact weight. In so far as the

team's task is to design a building that will withstand a code-specified seismic demand, any building

whose capacity (strength) exceeds that demand is acceptable. The more a building weighs, the greater the

base shear (i.e., the greater the force imposed by a given level of seismic demand) and, in response, the

more capacity the engineers must design in. Overestimating a building's weight, therefore, is safe.

Nearly all quantitative design problems take advantage of the idea of conservativism. Mathematically

speaking, structural engineers usually solve inequalities.'

Consequently, Peter and Carl's process is not at all capricious. They begin with a very

conservative (heavy) weight calculation, ignoring holes in the floor and, when finding a per-column load,

ignoring the six odd columns outside the regular array. These omissions simply save time and, had they

led to a weight value the team could feel good about, the team would have stayed with that value during

this early phase of analysis. But because the team deems the value too big, based on George's estimate,

they take steps to reduce it, being less conservative each time but only in ways they can justify: there

really will be 66 columns, and concrete really will be cut out at the top of the ramps. This exemplifies

one of central tensions of structural design: safety versus cost. The team does not simply stick with its

first weight calculation even though it offers a very comfortable safety margin. Peter and the others know

that the high cost of the extra-strong lateral system they would have to design as a result of an

overconservative weight estimation would surely dissatisfy the owner and architect. Structural engineers

usually try to reduce their margin of conservatism, while making sure to preserve some degree of it.

Operating in this fashion means the engineers must apply the concept of conservatism to nearly every

procedure and type of element in the trade. In this light, the concept of conservatism is highly abstract

and widely generalizable, invariant among rather than specific to particular situations, building structures,

or calculation processes, and reminiscent of (but even more general than) nurses' concept of drug

concentration. Applying conservatism to a calculation, of course, requires the engineer to attend to the

particular features of the problem, as he attempts to maintain a constant sense of the direction in which

design values lie relative to the critical value and of the potential quantitative effects of changing certain

factors. This skill seems to map in a general sense on to the school-math topic of understanding functions

(in this particular situation, mostly involving proportional relationships). For example, Carl knows that

increasing the number of columns would reduce the weight on each, and because of this knowledge he

knows to look for extra columns in the drawing that they might have missed.

s Despite this fact, the engineers' written calculations rarely use the symbols > or <, except when stating a given
limit from the code (e.g., a formula that Carl uses later to find the upper limit on the base shear, V .0.44 Sps/".
More typically, calculations for a design value, such as base shear, or an analytic value, such as deflection, are
carried out as equalities. Rather than calculate with inequalities throughout the problem, as school texts would have
them do, the engineers work with equalities, but maintain a sense of whether the variable they are evaluating be
greater or less than the numerical result they find.
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Making sense of abstract quantities

Having settled on a weight approximation for the building and entered it into the spreadsheet, the

team moves on. The next box in the spreadsheet is called "1997 UBC Factors," and the first prompt asks

for rmax, the redundancy factor, which quantifies the redundancy of the walls.

Peter decrees r, an important but possibly problematic calculation. He asks for the UBC codebook and Carl looks
up the factor. Later, I see that the UBC says r,a, is the maximum of the element-story shear ratios, r calculated on
each story. r, is the ratio of the shear force in the most heavily loaded wall to the total shear for the story. The UBC
says to find this by taking the maximum value of (wall shear)(10 /wall length)I(total story shear). Peter counts 8
north-south shear walls on a typical floor of the garage, but he does not know the total story shear, as this is a
function of the total base shear that the team is currently trying to calculate. He gets around this problem by
assuming that each wall will be equally loaded. With 8 walls in the N-S direction, each takes 1/8, or .125 of the
total story shear. This gives him the (wall shear) /(total story shear) ratio. Now he only needs to multiply this ratio
by (10 /wall length). He does not explain his shortcut to the team, just calculates out loud with Carl:

P: So we decided we're going to have 2, 4, 6, 8 walls...
C: Shear walls...
P: Right? So that's .125, and then there's a, 10...
C: 10 over the length of the wall...
P: 10 over the length of the wall...10 times, and then I divide by whatever the length of that wall is.

After estimating from the architect's drawing that all walls are about 15' in length, Peter uses his calculator to find
r,=(.125)(10/15) or .083.

The formula for r,a, is one of the least transparent I observe in use. The meaning of its factors

and their contributions to the result are not nearly as obvious as in most other structural engineering

formulas. Peter clearly understands two of the factors wall shear and total story shear well enough to

replace their quotient with a third quantity the reciprocal of the number of walls. This transformation

requires knowledge about these theoretical concepts as well as knowledge about the particulars of this

building. As Peter describes this replacement later: "[This] would only be a good assumption if all the

walls were the same length and height, and uniformly arranged around the center of rigidity9." It is not

apparent in the above excerpt, however, what sense Peter makes, if any, of the remaining factor,

(10 /wall length), since he carries out its calculation unproblematically. In a follow-up e-mail, I probe his

understanding of this factor, and Peter replies:

In my mind, this factor increases the importance of redundancy for walls less than or near 10 feet in length,
and reduces the importance of redundancy for walls much longer than 10 feet. Not a bad concept, but I
have no idea where 10 came from. I do not know the research upon which it was based. Consequently, I
interpret it as a nearly arbitrary, empirical factor, invented during a code committee meeting by cigar-
smoking old engineers.

9 The center of rigidity is the theoretical "center" of the building's resistance to lateral load, and is a function of the
locations and stiffnesses of the walls in the lateral system.
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At some point in his career, Peter has dissected the r,, formula and made a significant amount of

sense of its parts. In his conceptualization of this formula (or one of his conceptualizations, tailored for

today's calculation), he isolates the factor (10 /wall length) and envisions it as a scalar operating on some

redundancy measure composed of the other factors. He knows the mathematical behavior of this scalar

fraction as its denominator decreases or increases from 10, which allows him to predict the effect of those

different denominators on the redundancy. Specifically, he understands that 10' walls have no effecton

the redundancy, walls shorter than 10' will reduce the redundancy, and longer walls will increase it.

Peter's efforts to make sense of this formula extend to its most opaque part: the mysterious,

dimensionless 10. Despite his claim that he has "no idea where 10 came from," he fills in a story that

sounds as plausible as it is humorous.

The spreadsheet uses r, and the floor area to automatically calculate the next factor, p.

According to the UBC, p is the Reliability/ Redundancy Factor, given as p = 2 [20/(r,4Ab)]. This

factor measures the system's capacity to survive the failure of walls based on the presence of redundant

walls, i.e., a back-up system. It is a function of r,, as well as Ah, the ground-floor area of the building.

A p of 1 is considered a high degree of redundancy (good) and the target for design, with p of 1.5 or more

considered unacceptable. In the next excerpt, the team reacts to the p value that results from having just

inputted an r. of .083.

When the team sees the value 1.26 appear for p, Peter says, "Whoa!" and announces that they're "busted" for
having too many little walls. Carl wonders how many walls they'd need to add to get p"back to 1." But Peter says
the real question is, "Is that damn factor in the IBC or the BOCA?" Craig goes off to hunt for the BOCA codebook
as Peter and Carl move on to the next two prompts, the Importance and Zone Factors, both of which they know off
the tops of their heads to be 1. Once entered, these factors cause the spreadsheet to go back and automatically
change p to 1 (I read in the UBC that in Seismic Zones 0, 1,and 2, p should simply be set to 1.) Craig's search for
the BOCA is moot, now that p has been brought down to an acceptable level.

Based on its formula, p appears highly arcane and abstract. Like r,, it is dimensionless, and its

formula makes even less reference to obvious structural features. Yet the team has enough familiarity

with p to feel immediately unsettled about attaining a result of p= 1.26. Peter knows they want p to be

close to 1.00 and that values greater than 1.00 indicate decreasing redundancy in the system. I presume

he also knows what I discover later about the spreadsheet: in the final step, the base shear is scaled up by

p, forcing the design of a stronger building overall for p-values greater than 1, as a penalty for the lack of

redundancy. Peter even knows which actual feature of the garage's design accounts for the high p value:

not enough sizable walls. What is arguably the most abstract quantity in the base-shear calculation,

therefore, still seems to hold a significant amount of concrete meaning for Peter and the others. Initially,

Peter's understanding of p seems to be more general, not specific to this building, namely that it measures

the capacity of the building to survive the failure of some elements and that the more it exceeds 1.00 the
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worse. Later, however, Peter makes situation-specific sense of p when he interprets its resulting value in

terms of physical characteristics of this particular building.

Having entered all required input, the team now looks at the results in the spreadsheet box called

Results Summary.

The first result is the base shear, 2,202k, and the team immediately tries to assess the adequacy of the current walls
to resist this demand. Peter divides to find the shear force on each of the 8 walls; he gets 275k. Using 15' as the
length of each wall, he divides again to find that each foot of wall, longitudinally, would have to carry 18.3k of
lateral force. He continues on to find the force on each square inch of the wall's footprint. He and Carl guess that
the walls will be 8" thick (the architect has not specified), and they divide the 18.3k per lineal foot by 12" per foot
and by the 8" thickness to find .191 ksi or 191 psi. This is a value Peter can insert into a memorized concrete-
strength formula: the required strength of the wall is aNif'c, where fc is the strength of the concrete. Peter wants to
find a, a factor that will tell him if his walls are adequate or if more, longer, or reinforced walls will be required.
Peter assumes a concrete strength of 4000 psi and performs the calculation: a= 191/44000 = 3. He reports this
result to the others, and Carl announces what his teammates presumably already know: an a over 2 means
reinforcement is required.

In this last excerpt, the team continues to demonstrate facility with units and dimensions. One

way Peter can judge the reasonableness of the overall base shear is to see if the concrete in the walls is

strong enough to handle it, and concrete strength is conventionally expressed in per-square-inch units.

Starting with the total building's shear force (2,202k), Peter quickly proceeds through multiple conversion

steps to attain the force on a single square inch of the base of a wall. The intermediate results generated

during the calculation, such as 18.3k of load on a wall or .191 ksi, appear to hold no concrete meaning for

Peter. He has no overt reaction to any of these as he mumbles them and he gives no indication of

stopping to try to judge or make sense of them. Only the final result, a= 3, seems to allow the team to

reconnect with physical meaning. Because a exceeds 2, the concrete must be reinforced with steel. Here

again, an abstract quantity has become, over time, quite meaningful in a concrete way for these engineers.

Alpha has no units and no formula to define it, unless one counts the established formula explicitly solved

for required strength (V, = aqf'c), usually used when a is known. According to this formula, a is a factor

that expresses the scalar difference between the strength needed in the structure and the square root of the

strength that the concrete alone can provide not a particularly helpful description in which to ground

one's sense making about a. Rather, a has probably gained meaning for the engineers over time and

through experience, as they have played out the structural implications of various a values and developed

a sense of what constitutes a normal, feasible range.

* * *

The Dynamism of Abstraction

In finding the base shear of the Oldtown garage, Peter and the team demonstrate the dynamism of
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the degree of abstraction of the quantitative concepts used in structural engineering work. In my

observations, I found different forms of movement of concepts along an abstract-concrete spectrum. In

the remainder of this paper, I describe three kinds of conceptual movement:

from abstract to concrete

fluidly between abstract and concrete

from both abstract and concrete poles towards the center.

From abstract to concrete

The Oldtown vignette confirms the conventional wisdom: structural engineers work with many

quantities, units, and formulas that, at least on paper, would be characterized as highly abstract. At the

same time, however, these abstractions have in a sense become quite concrete for the engineers. Some

nominally abstract factors conjure up images of specific structural causes or implications; some prompt

nearly emotional responses when they exceed certain values. In the process of their work over time,

engineers appear to engage, sometimes quite actively, in continually assigning meaning to all factors,

regardless of how broadly these factors apply or how abstract their definitions or formulas for derivation.

The following excerpt offers a glimpse into this meaning-making process. It occurs a few days

after the opening vignette, as Carl hand calculates the Oldtown base shear by the IBC, a code he has never

used before. Following a chain of formulas in the codebook, Carl, at one point, is directed to look in

tables to find two values, Fa and F, to which he refers as "amplification factors."

Carl looks up the amplification factors and remarks that one is "pretty big," implying some knowledge of these
variables despite the fact that he has never seen them before. When I ask about this, he replies:

C: ...Basically, if you look at the equation, there're a whole bunch of factors. These are all modifications to
how much percentage of the base shear you're gonna take. And so some... in the UBC [the code with
which he is familiar], they have something called Ca and C, which are near-field effects for faults and it's
kind of like Fa and F Ca and C,,. This [referring to Fa] is acceleration-based, and this [referring to F ] is,
urn, this is probably factor...acceleration-based factor, velocity-based, and that's just...They have
something similar in the UBC... But if you look, you get penalized for soft soil 'cause you get E, and it
goes way up.

He points to a column in a table showing that, from Site Class A to E (having to do with soil type), the associated Fa
values rise. I ask whether his judgment that one of the factors was "big was based on a comparison with the other
values in the table or on his knowledge of the UBC.

C: It's relative to the other values here, and I also know from my schooling that soft soil is bad. And, it's
actually not bad as much as it is...If you put the improper structure on soft soil you'll hit resonance and
everything will fall apart.

Me: So you weren't surprised by what you just saw?
C: No. They want to guard against that, so they're going to make you overdesign.

Carl has never seen the factors Fa and F,, before, yet he immediately assigns some meaning to
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them through association with similar factors from the code with which he has much experience. Though

the range of values of Fa and F, differs from that of Ca and C,,, simply making the connection that they are

all measures of seismic acceleration tells Carl that Fa and F, will range from low, for less serious seismic

conditions, to high, and that, consequently, soft soil will be associated with high F values. Notably, Carl

does not just blindly substitute F values from the table into the appropriate formula with no attempt to

understand their meaning, although the calculation would be possible if he did. In addition, Carl reveals

that over time he has developed a fairly deep understanding of the UBC counterparts, Ca and C,,. He

understands these factors' role in the intermediate formulas and ultimately in the base shear, and he can

even articulate the code-writers' rationale for setting their values. This kind of meaning making would be

accomplished through experience with calculations, a process Carl demonstrates here in its early stages as

he tries to learn about the new factors. But here and in the next excerpt, Carl also implicates school as a

source of his understanding.

After his calculation is complete, I probe Carl's understanding of other new IBC factors. I ask

what he might have known previously about the S factors that appear in intermediate formulas with Fa

and F:

C: It's kind of complicated 'cause I know where the theory of this is derived from because I took it for my
Masters and they show you the response spectrum '° that they're using. And I know what... Basically, I'm
not sure what they're assigning values to 'cause they say the SOS is 2/3 of the Ss times Fa. [He jumps a step
here: his calc sheet and the IBC say Sos = 2/3 SMS and SMS = Fa Ss. He seems to have memorized the
algebraic link during his calculation.] I know the Fa is a factor of acceleration; I know the Ss is probably
the response spectrum, could be displacement, could be...it's most likely acceleration based. Basically it's
a portion of the curve... However, I couldn't tell you for certain that's what they mean, you know? That
means that SOS is a made-up number. It just a made-up empirical number...

Me: ...that maybe UBC doesn't use, necessarily?
C: ...that they had factor, yeah, and, like I said, I've done in my Masters... UBC has something like it, in '97,

and it's for a dynamic analysis, you can see the response spectrum. So I know where they come from but I
can't say for sure that that's exactly what they're doing because I don't know where they got the 2.5 [the
value for Fa]. It's a near-fault factor and they've calculated somewhere that, through testing and whatnot,
that this is the number we're gonna use.

Me: So it's a product of two concepts that you're very familiar with, but it's sort of their own synthesis?
C: For their actual numbers, you know, their little peak acceleration graph, you know, I don't know for sure

that that is the peak ground acceleration at that point. These could all be empirical things they've just
come up with. Which is what the code is, basically. It's an empirical way to try to rationalize earthquakes,
and, you know, that's why it changes every time there's a major quake, because they decide that it wasn't
good enough the last time, they're going to change it.

Though Carl cannot explain how specific values were generated for the F and S factors, he has a

deep grasp of what physical phenomena these factors measure, the general source of their derivation

(empirical tests), and even the social process by which their values are officially revised. Again, he

arrives at this understanding of factors he has never seen before by relating them to familiar factors, and

I° The response spectrum is a code-provided plot of seismic ground motion versus the building's oscillating period.
It supplies factors, such as the C and F factors discussed here, used to determine the base shear. The response
spectrum reflects the geologic, tectonic, seismological, and soil characteristics of the building site.
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he attributes much of what he knows about those familiar factors to theory he was taught in school,

specifically the general concept of a response spectrum. Clearly experience also plays a role in an

engineer's construction of meaning for a factor; in the process of his calculation, Carl has taken the first

step in building up his understanding Fa and Fv. Most importantly, this episode illustrates the dynamic

nature, in terms of abstraction, of the quantities used in engineering work the result of the engineers'

personal transformation of initially abstract quantities into ones that hold concrete meanings. During my

time in these two firms, I came to see this transformation as a hallmark ofengineering expertise. The

more experience an engineer has with certain factors, the more meaning the factors accrue and the more

fluently and the more ways he can predict their practical implications. Peter's conceptualization of the

factors comprising rma, is a case in point.

Fluidly between concrete and abstract

Despite the engineers' active and continual efforts to make abstract concepts meaningful, it is not

the case that, over the course of an engineer's experience, concepts only travel down a one-way street

from abstract to concrete or from general to particular. Expertise at the same time appears to include an

enhanced ability to recognize the applicability of methods and concepts in new situations. During

interactions between junior and senior colleagues, I repeatedly observed the same pattern: the senior

engineer would suggest the use of a general method or theoretical concept the junior had not considered

(this occurs in both of this paper's remaining examples). Furthermore, denotations of abstract and

concrete are confounded by the fact that in an important sense all artifacts in structural design work are

abstract. The entire design process operates on symbolic, idealized representations of physical elements

and structures that are inaccessible to the engineer and usually don't even exist. At best, the engineer can

tie abstract factors or concepts to other (possibly less) abstract factors or concepts, such as drawings or

mental pictures. During an interview about a different project of Firm l's, Georgeoffers some insight

into his mental representation of theoretical concepts. The fuzziness between real and symbolic artifacts

is apparent in his explanation. So, too, is evidence against the notion that quantities and concepts might

evolve irreversibly from more to less abstract, or vice versa.

My interview with George concerns the design and analysis of a single large beam, which had

become the major issue in the task I had observed. When Susan, a junior engineer, and George had

analyzed this beam, three variables had been central. V conventionally represents the major concept of

shear the tendency of two parts of an element to slide past each other. When a beam deflects by

sagging in the middle, two horizontal forces develop internally: compression (C) and tension (7) (Figure

4). Since V also refers to a horizontal force in the beam, and because I had observed George and Susan

frequently setting C or T equal to Vin their calculations, I had misinterpreted C and T as specific
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instances of V. Later, in this interview, George corrects me and explains that V is a distinct behavioral

phenomenon from C and T. They had only been set equal as a calculation strategy, to express that the

system was in equilibrium. George emphasizes the difference between the concepts:

There are behaviors associated with each of these letters you have there, and when I do engineering I think
first about the beam, about the elements, and I know how it's going to behave. Then I can control that
behavior or prevent that behavior. That's how I do engineering, is by thinking about them on a
fundamental level of their behavior first principles, we call it. And so all of these things have slots in my
mind. When you say V, that's a behavior, right? That's a slipping behavior.

Here, George appears to think and speak about theoretical and concrete concepts simultaneously.

"First principles" a handful of fundamental laws expressing relationships among space, time, mass, and

force that include Newtown's first three laws are the most general and fundamental concepts in

structural engineering, the ultimate theoretical source of virtually every structural analysis method (Beer

and Johnston, 1996). Yet George associates them with the behavior of the specific beam in the project,

suggesting that his understanding of the concept of V depends, at once, on highly abstract and highly

concrete ideas. I ask George if he pictures V, C, and T:

Absolutely. I can't get away from it. It is what it is, so when you say V, I can't see anything else. There's
no way that I can imagine V being Tor C. [...] The picture is things sliding...I go so far...I have this
arrow, just like that, opposite directions [he draws two parallel arrows pointing opposite directions (Figure
5)]. Things sliding relative... This is the slip plane, that's why the arrow only has half a head, 'cause it's
sliding...and I actually have that in my AutoCAD database as an element. That's a real element to me.
That's something I use as a thought process and I have this little guy [he draws a curved arrow] that's a
moment."

Again, George seems to think at once in both real and abstract terms, as he describes his mental

representation of Vas "things sliding" and as a simple diagram, which he goes on to call "a real element

to me." According to George, both images one of actual elements in motion and one comprising drawn

symbols prevent him from confusing V with C or T. During a calculation for this project, George had

coached Susan to apply the principle of equilibrium and set C equal to T. Recalling this episode, and

suspecting that Susan may not be as facile as George with these concepts, I now ask George what he

thinks Susan pictures. He laughs and says, "I don't know what Susan pictures. Something different!

Because we always have to negotiate a connection when we're talking about...!" I ask why he thinks

they imagine different pictures, and he replies:

All of these come to play in the educational process, OK? And when you're going through...being taught
engineering, you get diagrams that are basically distributions on sections of members, and forces that are
balancing each other, and you get equations. I mean, all this beam stuff, you know, if you're a
mathematician, you'd probably be really comfortable if you looked at the fourth derivative of load is
deflection, and everything could be done in derivatives and integrals without nary a picture or an arrow or

H The moment about a given point is the product of a force acting at a distance from the point and that distance, thus
with units of, for example, kip-feet. The distance is called the moment arm.
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a V or anything else. And so there are just a lot of different languages for just describing the same thing.
But the language that appeals to me is the picture language, and the subset of the picture language that I
think in is the arrows and the diagrams of the things in equilibrium.

Daniel, George's counterpart at Firm 2, also prefers to visualize. Like George, Daniel recognizes

math as another form of representation, one more accessible to people more mathematically trained than

he.

I happen to do this visually. There's a professor at [university] who I met and saw and he could do it
mathematically. So he could see even...he could see higher, I mean, things that I could never see. [...] I
remember him describing base isolation12 -- and it was a base isolation course and writing this very kind
of [summary] equation down, and I think...I don't know, it was an integral or something like that. And he
would point to a part of it and he would say, "That's...there you can do. You can see how base isolation
works." And he's pointing out part of an equation. And he actually could see how it works. [...] So, he's
seeing with math, and I'm seeing with visualization.

When I ask George if he thinks his junior engineers should picture concepts as he does, he

admits, "Well, actually I probably am saying that, because people who understand the mathematics tend

to make big mistakes because they don't think about the real world." I challenge his implication that his

arrows are the real world and elicit this response:

Well, no, I will grant you that that is not a piece of concrete and a piece of steel. That's beauty of it,
because, you know, when I said that, three images of the real world pop into my mind of where those two
arrows apply. One is at the center of a wood beam...a rectangular wood beam. And I know
instantaneously that the value of the arrow at the centroid of that beam is II/2 times the average over the
cross section. You know, another one of those things from mechanics of materials. And that's because it's
the integral of the stress in the area above that. And, you know, if you do all those integrals, you find out
it's 11/4 at the centroid.

George understands that the symbols, pictures, and equations engineers learn in school are merely

different means of describing concepts like V, C, and T, and he suspects that different people are

comfortable with different mental representations, depending on their training. But George also believes

that, for structural analysis, mental pictures like his "arrow and diagrams of the things in equilibrium" are

the most effective forms of representation because they force him to "think about the real world."

Though the actual beams and studs are unavailable to be directly experienced, George feels that his

mental arrows facilitate connections with real physical behavior and therefore help prevent calculation

errors. George's self-described system of representation apparently supports a form of understanding of

these engineering concepts that permits fluidity between abstraction and concreteness. This fluidity

enables widespread application of these concepts and, at the same time, immediate grounding in particular

situations.

12 Base isolation is a design technique for seismic resistance that decouples or isolates the motion of the foundation
from the rest of the building, which can then remain relatively still. This is sometimes accomplished by placing a
layer of natural or synthetic rubber between the structure and its foundation.
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From both abstract and concrete poles towards the center

In the above discussion with George, equilibrium emerges as another abstract principle useful for

guiding calculations, much like conservatism. The frequent occurrence of non-routine calculation

methods that I witnessed in structural engineering work raises the question of how the engineers are able

to generate them. My observations revealed that an important resource though not the only one for

deciding how to proceed in uncertain situations is the corpus of abstract, general concepts or principles,

with which all the engineers were deeply familiar. Besides conservativism13 and equilibrium, such

theoretical concepts include moment, redundancy, oscillating mode, and base shear. A final excerpt

illustrates how the principle of equilibrium, as well as some basic concepts from statics theory, guides

two Firm 2 engineers through the creation of an original calculation method.

Larry, under the guidance of his supervisor, Daniel, is performing a state-of-the-art lateral

analysis of a large, complicated building built in 1948. He employs several analysis software packages,

including one called ETABSI4, in which he models the entire building. Larry's analysis depends on the

internal forces generated at each intersection between piers (major columns) and spandrels (major beams).

ETABS calculates these forces for elements of uniform thickness. The 4th -floor spandrel, however, has

two thicknesses, so Larry has modeled it in ETABS as two separate spandrels, a thin one lying along the

top of a thicker one. As a result, ETABS has returned two separate moments and two separate axial, or

horizontal, forces for this spandrel where it intersects a pier (Figure 6a). In the following excerpt, Daniel

and Larry struggle together to figure out a way to calculate the single moment force on the end of this odd

spandrel from the available ETABS data (Figure 6b).

Initially, Larry and Daniel believe the total moment should be made up of the two separate moments reported by
ETABS plus the moment generated by the discrepancy between the axial forces acting on the thin and thick parts.
So they proceed to co-invent a way to calculate that axial force differential. Larry reads the two axial forces from
the ETABS Spandrel Forces table: 676k on the lower part and 180k on the upper. This means a total axial force of
676 + (-180) or 496k has developed here. For the area to be in equilibrium, an "external" force of 496k must be
acting axially on this section but in the opposite direction, i.e., -496k. (Here, "external" refers not to the seismic
force applied to the entire building but to the force ultimately translated to this section of spandrel through the
immediately surrounding elements.) Distributing this external load evenly to the two parts of the spandrel assigns
each -248k. Now the total force on the lower part is 676 + -248 or 428k and on the top is -180 + -248 or -428k.
Axial equilibrium is thereby attained: 428 + -428 = 0. But because they are separated by the distance between the
centers of the upper and lower parts of the spandrel, these axial forces produce a moment the tendency for the
spandrel to rotate.

13 Bucciarelli (1994) found that the principle of conservation "reigns supreme" across the engineering fields he
studied. He describes (p. 85) how energy conservation provides "the main theme" for one engineer's model of a
photovoltaic system.
14 Produced by Computers & Structures, Inc., ETABS is a software utility for modeling and analyzing structures,
based on a mathematical technique called finite-element analysis.
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Larry and Daniel's development of the method to this point, however, is far messier than the

above explanation, as their dialogue illustrates:

L: What could you add to both of them to make'em all the same? That's your force that you're adding in. So
if you took that out, it'd just be a moment. Right?

D: 180 and 677 [I do not know why Daniel says 677 rather than 676]. That guy is the one that's locked [to
him?].

L: So, then, we're getting 428.
D: So if you...If you add what you think the axial load through the system is, you get 428?
L: I think...No, what I get is 240.
D: If you add 240...
L: If you add 248...
D: Mmhmm. Times 2, right here. So 248 times 2...
L: The other way. Not times 2, just times one.
D: OK, 248...
L: Right, to each of these...
D: Mmhmm.
L: ...you end up with the same.
D: [Writing calculations] And this...So this one becomes what?
L: 180 add 248. 428?
D: So this minus 124? 1...
L: What?
D: Negative 180 minus 124 equals negative 428.
L No! Negative 180 minus 248 equals negative 2...
D: OK, so...
L: Oh, I guess, yeah, times 2 [missing].
D: Times 2. Times 2. 248 [missing] and this...
L: Plus...Minus 248.
D Minus 248 equals 428.
L: Right.
D: OK.
L: So 428 is causing your couple.

Proceeding on, the men multiply this 428k by 3.2', the moment arm or distance between the central axes of the top
and bottom parts, to find a moment of 1370 k'. They add this to the two separate moments given by ETABS, 107k'
and 1065 k', to finally get the single moment value of 2542 k'. For now, they accept this as the moment on the
fourth-floor spandrel at this intersection and deem the method suitable for calculating the rest of the spandrel's
moments.

Daniel and Larry work on another problem, but after several minutes Daniel suddenly announces he knows
a better way to calculate the 4`11-floor moments "using statics." On scratch paper, he draws a cross, representing the
intersecting pier and spandrel, and at each end of the cross he draws a curved arrow representing a moment (Figure
8). ETABS does give accurate moment forces for the piers at this intersection, and Daniel writes these values on the
top and bottom arrows. Then, he explains to Larry, the sum of the top and bottom pier moments must also be the
sum of the left and right spandrel moments. 15 Although the men cannot calculate the particular moment on each
side, they can at least find their sum and, subsequently, their average. Daniel says he feels confident about this
method.

In some ways, Daniel and Larry's methods exemplify the kind of situation-specific, contextually

shaped mathematics described by Lave and others. Their first, co-invented method in particular is highly

non-standard, probably unique, and, considering that they ultimately reject it, possibly even wrong.

15 More accurately, the sums must be opposites. Daniel is obeying Newton's first law, which says that, for a system
to be in equilibrium, the sum of all moments about any point must be zero.
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(They never bother to test it by comparison with their presumably correct second method.) Even if it

were correct, it would never be found in a textbook or curriculum because it has no use beyond this very

specific and unusual situation. Nevertheless, both of the calculation methods invented in this episode are

deeply rooted in abstract, theoretical, school-taught principles, including Newton's first law, the concept

of equilibrium, and the standard algorithm for calculating the moment produced by offset horizontal

forces. Larry and Daniel appear to enact a process of working inwards, simultaneously, from opposite

ends of the concrete-abstract spectrum from the specific constraints of the situation (namely the limited

information provided by ETABS) and from the overarching theory that the men know must apply to

arrive at a method that works here and now but obeys the fundamental principles of their practice.

Conclusion

As the analysis in this paper illustrates, structural engineers practice in a world of quantities,

units, procedures, and concepts, some of which exhibit concrete qualities, some of which appear more

abstract, and some of which defy placement in either camp. Quantities whose "book" versions would

qualify them as abstract and difficult to relate to real phenomena are, through experience and association,

imbued with meaning by individual engineers. Units lacking clear physical referents are used fluently in

calculations. Highly theoretical and general concepts are combined with contextual constraints to guide

or generate calculation methods. Thus, engineering expertise appears two-pronged, involving an

increased amount of personal, concrete meaning associated with particular quantities and concepts and, at

the same time, greater facility with abstract methods and theory.

This two-pronged image of expertise stands somewhat in contrast with Lave's (1988) portrayal of

expert dieters. As they spent more time in the Weight Watchers program, her subjects replaced

calculations for apportioning food with invented measurement strategies that relied on artifacts in the

setting and past experience with similar situations. Dreyfus and Dreyfus (1986) similarly characterize the

transition from novice to expertise as a one-way trip, an "evolution from the abstract toward the

concrete," which entails:

...the progression from the analytic behavior of a detached subject, consciously decomposing his
environment into recognizable elements and following abstract rules, to involved skilled behavior based on
an accumulation of concrete experiences and the unconscious recognition of new situations as similar to
whole remembered ones (p. 35).

When they can, expert engineers surely take advantage of their "accumulation of concrete experiences" to

avoid calculations in favor of estimations or judgments about which they feel certain. But their increased

experience also appears to facilitate their recognition and application of abstract concepts and algorithms

23 21



behavior necessitated by the sociopolitical conventions of structural engineering and arguably just as

"skilled" as the more intuitive and unprincipled action elevated by Dreyfus and Dreyfus. This is not to

say that the terms abstract and concrete are unhelpful for describing aspects of the mathematics involved

in engineering work. The episodes presented here, however, problematize an abstract-concrete

dichotomy in which quantities and concepts are permanently relegated to one of two poles according to

static, inherent qualities. Instead, abstraction may be more aptly imagined as a dynamic, continuous

quality, with engineers displaying some degree of control over the level of abstraction of the quantities

and concepts they use. In this view, the movement of concepts along this continuum can vary in time and

direction. An important implication of such a view would be that research about everyday and workplace

mathematical behavior would stand to yield more insights by adopting a conceptual framework that

admits a continuum, not a chasm, between abstraction and concreteness.

Some scholars have recently explored such continuous frameworks. Wilensky's (1991)

redefinition of concreteness well describes my findings of the dynamic quality of abstraction and the

engineers' agency in determining a concept's degree of abstraction:

[C]oncreteness is not a property of an object but rather a property of a person's relationship to an object.
Concepts that were hopelessly abstract at one time can become concrete for us if we get into the 'right
relationship' with them. [...] The more connections we make between an object and other objects, the more
concrete it becomes for us. The richer the set of representations of the object, the more ways we have of
interacting with it, the more concrete it is for us. [...] Once we see this, it is not difficult to go further and
see that any object/concept can become concrete for someone (p. 198).

In their nursing study, Noss, Hoyles, and Pozzi (2002) develop the notion of "situated

abstraction" to describe a conceptualization (like drug concentration) that is "finely tuned to its

constructive genesis how it is learned, how it is discussed and communicated and to its use in a

cultural practice, yet simultaneously can retain mathematical invariants abstracted within that community

of practice" (p. 205). The efforts of Carl, Peter, and George to endow abstract quantities with concrete

meaning but retain the ability to apply them widely are reflected in Noss et al.'s observations of the

nurses' behavior:

Abstraction in the form of conceptualizing relationships of mass and volume were made by the nurses but
did not necessarily involve abstracting away from the situation. In fact, the reverse was true: the noise of
the practice appeared to be decisive in generating meaning (p. 226).

Similarly, Carraher and Schliemann (2002) propose that "Abstract thinking is not antagonistic to

the idea of reasoning in particular contexts" (p. 142), and elaborate, "Symbols and representational

systems are abstract not because they are removed from contexts, but because they can be employed in a
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very wide range of contexts" (p. 141). These authors coin the term "situated generalization" to capture

the phenomenon of abstract thinking with contextual ties.

Dynamic perspectives of abstraction have allowed scholars to resuscitate, yet transform, the

notion of transfer. According to Carraher and Schliemann, "developing flexible mathematical knowledge

depends on our ability to recontextualize problems to see them from diverse and fresh points of view

and to draw upon our former experience, including formal mathematical learning" (p. 146). Lobato

(2003) draws on the ideas of recontexualization and "dynamic production" to develop a new model of

transfer. She defines actor-oriented transfer as "the personal construction of relations of similarity across

activities, (i.e., seeing situations as the same)" (p. 20). Echoing Wilenski, Lobato emphasizes "learners'

personal perceptions" of what is similar across situations, as well as the influence of artifacts, language,

and social structures on these perceptions. These reconceptualized versions of transfer resonate with my

depiction of engineering expertise and would provide helpful frames for inquiry into how engineers

develop the ability to recognize and apply theory.

The static associations found by previous scholars of school math with the abstract and real-

world math with the concrete gave rise to pessimism about the potential of school to prepare students

for solving everyday problems. Rejecting that dichotomy and readmitting transfer (albeit in a new form)

could be cause for greater optimism. Further ethnographic research into other workplace practices would

be needed to ascertain whether a dynamic capacity for abstract and concrete conceptualization is a general

aspect of adult mathematical expertise. To the degree that it is, a new goal might be implied for school

math curricula: to immerse students in opportunities to develop both abstract and concrete understandings

of concepts and quantities and to develop students' ability to move fluidly between them. Investigating

the learning of practicing engineers was not an explicit goal of this study, but the engineers' process of

building both abstract and concrete meanings whether called learning or not evokes the constructivist

view of how children learn. Thus, the findings of this study not only lend support to classroom methods

that encourage students to construct their own meanings of mathematical concepts and quantities, but they

suggest that constructivism may describe equally well the knowledge acquisition of adults.
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